118 research outputs found

    MetaAge: Meta-Learning Personalized Age Estimators

    Full text link
    Different people age in different ways. Learning a personalized age estimator for each person is a promising direction for age estimation given that it better models the personalization of aging processes. However, most existing personalized methods suffer from the lack of large-scale datasets due to the high-level requirements: identity labels and enough samples for each person to form a long-term aging pattern. In this paper, we aim to learn personalized age estimators without the above requirements and propose a meta-learning method named MetaAge for age estimation. Unlike most existing personalized methods that learn the parameters of a personalized estimator for each person in the training set, our method learns the mapping from identity information to age estimator parameters. Specifically, we introduce a personalized estimator meta-learner, which takes identity features as the input and outputs the parameters of customized estimators. In this way, our method learns the meta knowledge without the above requirements and seamlessly transfers the learned meta knowledge to the test set, which enables us to leverage the existing large-scale age datasets without any additional annotations. Extensive experimental results on three benchmark datasets including MORPH II, ChaLearn LAP 2015 and ChaLearn LAP 2016 databases demonstrate that our MetaAge significantly boosts the performance of existing personalized methods and outperforms the state-of-the-art approaches.Comment: Accepted by IEEE Transactions on Image Processing (TIP

    Joint Route Optimization and Multidimensional Resource Management Scheme for Airborne Radar Network in Target Tracking Application

    Get PDF
    In this article, we investigate the problem of joint route optimization and multidimensional resource management (JRO-MDRM) for an airborne radar network in target tracking application. The mechanism of the proposed JRO-MDRM scheme is to adopt the optimization technique to collaboratively design the flight route, transmit power, dwell time, waveform bandwidth, and pulselength of each airborne radar node subject to the system kinematic limitations and several resource budgets, with the aim of simultaneously enhancing the target tracking accuracy and low probability of intercept (LPI) performance of the overall system. The predicted Bayesian Cramér–Rao lower bound and the probability of intercept are calculated and employed as the metrics to gauge the target tracking performance and LPI performance, respectively. It is shown that the resulting optimization problem is nonlinear and nonconvex, and the corresponding working parameters are coupled in both objective functions, which is generally intractable. By incorporating the particle swarm optimization and cyclic minimization approaches, an efficient four-step solution algorithm is proposed to deal with the above problem. Extensive numerical results are provided to demonstrate the correctness and advantages of our developed scheme compared with other existing benchmarks

    Collaborative Trajectory Planning and Resource Allocation for Multi-Target Tracking in Airborne Radar Networks under Spectral Coexistence

    Get PDF
    This paper develops a collaborative trajectory planning and resource allocation (CTPRA) strategy for multi-target tracking (MTT) in a spectral coexistence environment utilizing airborne radar networks. The key mechanism of the proposed strategy is to jointly design the flight trajectory and optimize the radar assignment, transmit power, dwell time, and signal effective bandwidth allocation of multiple airborne radars, aiming to enhance the MTT performance under the constraints of the tolerable threshold of interference energy, platform kinematic limitations, and given illumination resource budgets. The closed-form expression for the Bayesian Cramér–Rao lower bound (BCRLB) under the consideration of spectral coexistence is calculated and adopted as the optimization criterion of the CTPRA strategy. It is shown that the formulated CTPRA problem is a mixed-integer programming, non-linear, non-convex optimization model owing to its highly coupled Boolean and continuous parameters. By incorporating semi-definite programming (SDP), particle swarm optimization (PSO), and the cyclic minimization technique, an iterative four-stage solution methodology is proposed to tackle the formulated optimization problem efficiently. The numerical results validate the effectiveness and the MTT performance improvement of the proposed CTPRA strategy in comparison with other benchmarks

    Synthetic Aperture Radar Image Background Clutter Fitting Using SKS + MoM-Based G

    Get PDF
    G0 distribution can accurately model various background clutters in the single-look and multilook synthetic aperture radar (SAR) images and is one of the most important statistic models in the field of SAR image clutter modeling. However, the parameter estimation of G0 distribution is difficult, which greatly limits the application of the distribution. In order to solve the problem, a fast and accurate G0 distribution parameter estimation method, which combines second-kind statistics (SKS) technique with Freitas’ method of moment (MoM), is proposed. First we deduce the first and second second-kind characteristic functions of G0 distribution based on Mellin transform, and then the logarithm moments and the logarithm cumulants corresponding to the above-mentioned characteristic functions are derived; finally combined with Freitas’ method of moment, a simple iterative equation which is used for estimating the G0 distribution parameters is obtained. Experimental results show that the proposed method has fast estimation speed and high fitting precision for various measured SAR image clutters with different resolutions and different number of looks
    • …
    corecore